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This guidebook is intended to provide a practical overview of climate envelope modeling for conservation 
professionals and natural resource managers.  The material is intended for people with little background or 
experience in climate envelope modeling who want to better understand and interpret models developed by 
others and the results generated by such models, or want to do some modeling themselves.  This is not an 
exhaustive review of climate envelope modeling, but rather a brief introduction to some key concepts in the 
discipline.  Readers interested in a more in-depth treatment of much of the material presented here are referred 
to an excellent book, Mapping Species Distributions: Spatial Inference and Prediction by Janet Franklin.  Also, a 
recent review (Araújo & Peterson 2012) provides an excellent, though more technical, discussion of many of the 
issues dealt with here.  Here we treat selected topics from a practical perspective, using minimal jargon to explain 
and illustrate some of the many issues that one has to be aware of when using climate envelope models.  When 
we do introduce specialized terminology in the guidebook, we bold the term when it is first used; a glossary of 
these terms is included at the back of the guidebook. 

We have written the guidebook from the perspective of a natural resource manager attending a national 
conference, reading scientific articles or viewing webinars on climate change science related to species and 
habitat.  That manager would likely read or hear about research from across the United States or the world, 
including many talks in which different groups are using climate envelope models to forecast species responses 
to future climate change.  As is often the case in real life, the different research groups presenting at the 
conference may be addressing broadly similar questions, but the details of their approaches differ.  Some may 
be working with endangered species, others with invasive species, and some with migratory species.  Some 
researchers may work with plants, and others with animals (one of the great things about climate envelope 
modeling is that the approach is the same regardless of the species of interest).  They probably use different 
methods to create their models, the spatial extent of their modeling may vary, and they may use different 
approaches to validate their models.  How would a non-expert compare such seemingly disparate models?  
Are there ‘best practices’ to keep in mind when evaluating climate envelope models?  How would you know if 
someone is making a reasonable inference, or violating a major assumption of the modeling?  We attempt to 
deal with some of these issues and other important concepts related to climate envelope modeling throughout 
the guidebook. 

 The guidebook is structured as a series of questions that might result from hearing about work with climate 
envelope models at a conference, webinar, or in the primary literature.  We begin with some general aspects of 
models and relevant background information.  We then examine different components of the models, including 
species and climate data.  We illustrate key concepts with examples from our own work developing climate 
envelope models for Florida’s threatened and endangered species, as well as work of others in the field of 
distribution modeling.   

Preface
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We urge readers of this guidebook to keep in mind that models are one part of a natural resource manager’s 
toolbox, but they are not the only, or even the most important tool.  It can’t be repeated enough that ‘all models 
are wrong, but some models are useful’.  Models are abstractions of reality and cannot, by definition, include 
all the relevant or interesting parts of a system.  Models can help guide our thinking by describing plausible 
outcomes of different conditions or management decisions and they help to suggest hypotheses to be tested with 
additional research.  Models do not provide all the answers and should not be accepted uncritically—all models 
make simplifying assumptions and abstract reality in different ways.  It is our hope that this guidebook helps 
identify some of the key assumptions and uncertainties underlying climate envelope modeling while providing 
useful insights that will help users interpret the results of climate envelope models. 
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I. INTRODUCTION TO CLIMATE ENVELOPE MODELING

What is a climate envelope model?
	
Throughout this document we use the term 

‘climate envelope model’ to refer to a subset of 
species distribution models that use climate 
variables to make spatial predictions of environmental 
suitability for a species.  Species distribution models 
(also called ‘niche models’) use rules or mathematical 
functions to describe associations between species 
occurrence and environmental conditions.  On 
the basis of these rules, users can extrapolate an 
index of environmental suitability or probability 
of occurrence for the modeled species from a map 
of environmental conditions.  This extrapolation 
involves taking the mathematical functions describing 
species-environment associations and applying those 
same functions to environmental data from some 
other time or place.   The variables used in species 
distribution models may include climate, land cover, 
topography or any other variable relevant to the 
species being modeled.   Species distribution models 
may be used for a variety of different purposes, such 
as identifying species diversity hotspots (Platts et 
al. 2010) and predicting potential ranges of invasive 
species (Bidinger et al. 2012), or forecasting climate 
change effects on biodiversity (LaSorte & Jetz 2012).  
In a strict sense, climate envelope models refer to a 
particular type of model that defines minimum and 
maximum values of climate boundaries around species 
occurrences, thereby delimiting a ‘climate envelope’ 
within which species occur.  In this guide, however, 
we use the term more generally to refer to any type of 
species distribution model that draws on climate data 
to define environmental suitability. 

What are climate envelope models 
designed to do?

Climate envelope models delineate areas of 
climate suitability for plant or animal species 
of interest by correlating georeferenced species 
occurrences (presences and absences) with observed 
climate conditions at occurrence sites.  Climate 
envelope models are spatially-explicit, and modelers 
generally use maps of species occurrences and climate 
conditions to describe species-climate relationships 
within individual grid cells of those maps. According 
to our definition, climate envelope models only 
include climate variables, so the models are only 
describing areas (grid cells) where climate is suitable 
(or projected to become suitable) for the species being 
modeled.  There are many other factors in addition to 
climate that may limit species distributions, such as 
habitat availability, habitat fragmentation, competition 
with other species, and predators.  Some of these 
factors can be included along with climate variables 
using the same modeling framework (variables such 
as land cover and elevation), but that would constitute 
a more general species distribution model.  Here we 
focus specifically on climate variables, and climate 
envelope models.  Climate envelope models do not 
explicitly incorporate species traits or additional 
information into models. Some species information is 
introduced into models implicitly, during the variable 
selection process.  

 We address the theoretical and practical 
implications of variable selection below. Later in 
the document we also discuss in more detail what 
a climate envelope model does not do, and make 
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suggestions for judicious interpretation of climate 
envelope model outputs.  Remember, though, that 
models are abstractions of reality, and should not be 
used as the sole basis for natural resource decision-
making, but rather serve as one of many tools that can 
help inform decisions.      

Climate envelope models generally define climate 
suitability first based on contemporary climate, 
although the exact time period used to define 
‘contemporary’ conditions varies among studies.  Also 
note that climate envelope models are not necessarily 
defined first for the contemporary period and then 
extrapolated to the future.  Although this is a very 
common way of doing climate envelope modeling, 
one can just as easily define a model for some 
past time period, and extrapolate the model to the 
modern day, or define a model using modern climate 
and extrapolate it to the past.   However, for the 
purposes of understanding potential climate change 
effects, scientists generally calibrate models based 
on twentieth century climate, or some subset (many 
studies use climate ‘normals’, or long-term averages, 
from a 30—50 year period at the end of the twentieth 
century).  

Throughout the guidebook, we refer to calibration 
as the process of fitting the mathematical species-
climate association, which is followed by the use of 
evaluation metrics to describe how well the model 
links species occurrences to climate (this process 
is described in more detail later).   Most of the 
time, scientists are interested in extrapolating the 
contemporary species-climate relationship into the 
future to describe possible effects of climate change 
on species.  In that case, the mathematical relationship 
between species occurrences and climate described for 
the present day is assumed to hold true in the future, 
and areas where climate is expected to be suitable for 

a species in the future are identified using descriptions 
of future climate conditions (Figure 1).

What are the limitations of climate 
envelope models?

The first thing to remember is that a climate 
envelope model is only using information on climate 
to establish a mathematical association between 
species occurrences and climate variables.  Climate 
envelope models make broad generalizations about 
areas that may have suitable climate for species, but 
that’s it.  Climate does not generally vary on the scale 
of 50—100 m, or even a few kilometers, so climate 
envelope models are not likely to be useful for making 
predictions about where species will be located 
within a typical wildlife refuge, for example.  Climate 
suitability alone does not guarantee the species will 
actually be present in an area.   

Because climate envelope models do not 
incorporate species-specific data other than 
occurrence, models do not predict traits such as 
changes in phenology (the timing of organism’s 
life cycles, such as egg laying or flowering times) 
or demographic rates (births, deaths, immigration 
or emigration).  The modeling of such responses 
falls under the umbrella of mechanistic models, 
physiological models, or process-based models 
(Kearney & Porter 2009).  Studies that have compared 
predictions from climate envelope models to 
predictions from mechanistic models that incorporate 
demographic and physiological data suggest that 
outputs from these different types of models are not 
as discrepant as may be expected given the differences 
in the input data. One study (Kearney et al. 2010) 
found that results were broadly comparable.  Another 
study (Buckley et al. 2010) found that predictions 
from both climate envelope and mechanistic models 
alone were not as successful in predicting occurrences 
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Figure 1.  Conceptual overview of the climate envelope modeling process.  In step one, climate data are compiled at sites where a species 
exists, as well as sites where species are absent or their status is unknown.  In step two, a mathematical equation is used to extrapolate an 
estimate of climate suitability for the species using the same climate data as in step one.  In step three, using the same species-climate 
relationship as in step two, climate suitability is extrapolated to a new (future) period based on future climate conditions.  
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of the Eastern fence lizard (Sceloporous undulatus) 
as a hybrid approach combining elements of both 
modeling approaches.  Recently-developed extensions 
of mechanistic modeling such as dynamic range 
models (Pagel & Schurr 2012; Shurr et al. 2012) 
focus special attention on dispersal, an important 
characteristic that is missing entirely from traditional 
climate envelope models.  Because data inputs for 
climate envelope models are much less demanding 
than for mechanistic models, we expect that climate 
envelope modeling will continue to be used for 
modeling of species for which detailed demographic 
or physiological data are lacking, even as approaches 
for mechanistic modeling become more user-friendly.  
We reiterate, however, that models of any type should 
only be part of the decision-making toolbox, and not 
the sole basis for conservation planning. 

What are the differences between climate 
envelope and mechanistic models, and what are 
you likely to learn from each of them?  In general, 
mechanistic models are more data intensive, because 
they require detailed information on how individual 
fitness varies as a function of climate (e.g., survival 
growth and reproductive output under different 
temperature or precipitation conditions). These data 
are generally used to fit specific equations describing 
things like physiological response curves.  Since 
those types of data are not available for many species, 
physiological models are available for only a few 
species.  In contrast, climate envelope models can be 
created for many different species (e.g., almost 3000 
species of terrestrial vertebrates in the North and 
South America, Lawler et al. 2009).  Because the 
outputs of mechanistic models include information 
on how fitness traits vary across climate gradients, 
they can provide insights into the effects of climate 
on specific aspects of an organism’s life history in 
a presentation or paper on mechanistic models 
than in a presentation on climate envelope models.  

However, because climate envelope models can be 
easily modified to include data on other types of 
environmental conditions (land cover, elevation, 
etc), you are more likely to learn about the relative 
importance of climate in determining species range 
limits or range shifts when reading a paper on climate 
envelope models than in a paper on mechanistic 
models.  In general, it probably makes sense to think 
about climate envelope models as being focused on 
broad patterns and limiting factors for species, often 
in the context of a relatively coarse-filtered screening 
tool for evaluating species susceptibility to climate 
change.  Mechanistic models, on the other hand, give 
much more insight into how climate change affects 
demography of individual species and are probably 
more likely to be used for species already known to be 
at risk for negative effects of climate change or that 
are of particular economic or cultural importance (e.g., 
waterfowl and sport fish).     

       
How are climate envelope models 
created?

Creating a climate envelope model is fairly 
straight forward in concept.  A researcher gathers 
occurrence data and contemporary climate data to 
establish the relationships between species occurrence 
and climate variables.  The relationship is calculated 
using one or more algorithms, and the researcher 
evaluates the results.  Once the relationship has been 
determined, a researcher can use that relationship 
with projections of future climate to describe the 
future climate envelope for the species.  The modeling 
process can vary quite a bit, depending on factors 
such as the algorithm and statistical software used for 
modeling and the extent to which input data are pre- 
or post-processed.   Since it is not practical to include 
a detailed how-to guide that is applicable to all types 
of models and available platforms, here we highlight 
some of the key steps in the modeling process. 
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Model evaluation or validation is a critical part of 
model development, and has important implications 
for model interpretation.  Scientists often use climate 
envelope modeling to make a projection of future 
conditions (‘prediction’ and ‘projection’ have very 
specific and sometimes contentious definitions in the 
literature on climate change, but in general scientists 
use the word projection to talk about a conditional, 
far-off in the future condition, and prediction to refer 
to a more immediate, relatively verifiable condition; 
Bray & von Storch 2009).  Since we cannot wait to 
see if species responses to climate change corroborate 
our model projections, how do we know if we have 
a ‘good’ model?  In general, we evaluate the model 
based on how well it is able to classify contemporary 
presences and absences/‘pseudo-absences’.  It can 
be quite hard to determine true ‘biological’ absences 
due to challenges in surveying wild populations, 
particularly animals.  Therefore, many users include 
‘pseudo-absences’ in climate envelope models.  This 
is discussed in more detail later.  In other words, 
because we use the same functional relationship 
between species occurrence and climate to create 
a projection of future climate suitability as we do 
to create the contemporary model, we can evaluate 
model performance based on its ability to accurately 
say something about where species are or not based 
on today’s climate.  This is why we first create an 
extrapolation of climate suitability for the species 
being modeled based on contemporary climate—we 
want to create a map of climate suitability that we 
can evaluate using known occurrence data.  Of course, 
the best way to evaluate a model would be to use two 
completely independent presence/absence datasets, 
the first one to calibrate the model, and another, 
completely independent one to evaluate the model.  
In reality, we often do not have independent presence/
absence survey data for species, so we usually use a 
data partitioning or cross-validation procedure for 
model evaluation.  There are a couple of different 

ways to do that, both of which require dividing the 
occurrence data (all the data, both presences and 
absences) into ‘training’ and ‘testing’ subsets.  The 
training data are used to calibrate a model, which 
is evaluated using the test subset.  It is invariably 
true that the use of truly independent survey data 
for testing will result in lower model performance 
than when a cross-validation procedure is used.  This 
lower estimate, however, is a better indicator of 
model performance than an inflated estimate from 
cross-validation.  Because it is relatively  rare that 
researchers have access to independent presence/
absence data for model evaluation, we focus on cross-
validation techniques below.

Researchers use a variety of cross-validation 
procedures to evaluate performance based on a 
model’s ability to correctly differentiate presences 
and absences.  One such technique is called k-fold 
partitioning, wherein the presence-absence dataset is 
divided into k number of groups (e.g., with 10 groups 
you have ten-fold partitioning, with five groups you 
have five-fold partitioning).  All but one of the groups 
are combined and used to train the model, and the 
last group is used to test the model.  The process 
is repeated k times, until each subset has been the 
test subset once, and part of the training subset k-1 
times (Figure 2).  Subsetting is a different type of 
cross-validation.  In that case, a researcher subsets 
the species occurrence database (again including 
both presences and absences) into training and 
testing subsets. Usually, a modeler assigns about 75% 
of the occurrences to the training dataset and the 
remaining 25% are retained for validation, though 
slightly different proportions are sometimes used.  
The subsetting procedure is repeated a number of 
times (say 100) so that different data points comprise 
the training and testing partitions each time, and 
the average results are presented.  Using both cross-
validation procedures, the success of the model in 
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correctly characterizing presences and absences in the 
test dataset is examined (details of the metrics used 
to evaluate model performance are discussed in the 
next section). If model performance is acceptable, 
all the presence/absence data may be used in a final, 
‘real’ model that can then be applied to contemporary 
climate conditions or used to make a projection of 
climate suitability under future conditions.   

Does the type of cross-validation procedure 
matter for differentiating a good versus bad model?  
In short, probably not that much.  Although we are 
unaware of studies that specifically compare cross 
validation techniques in climate envelope models, 

both of the approaches described here are widely used 
in the literature.  What is probably more important 
is repeating the subsetting process a number of 
times with random partitions of the data to reduce 
the chance that, by luck, a model tests particularly 
well, even if examination using another test subset 
(or fold) would result in much lower performance. 
Model evaluation is considered an integral part of 
the modeling process, and users should treat results 
with particular caution if the results of a partitioning 
or subsetting procedure are not explicitly presented 
along with the model’s projections.  Furthermore, 
the gold standard for model evaluation is the use 
of independent presence/absence data, and users 

Figure 2.  Example of 10-fold cross validation.  
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should almost always prefer information from models 
evaluated against independent survey data than from 
models evaluated using a cross-validation procedure. 

How is model performance evaluated?

There are many ways to evaluate performance 
in climate envelope models.  However, before going 
into some details about different ways to evaluate 
model performance, it’s worth considering what 
we are evaluating.  When people talk about model 
performance, they are talking about the model’s 
ability to correctly distinguish sites where a species 
is known to occur from those where it is absent (in 
the case of true field survey-based absences) or its 
occupancy status is unknown (when using pseudo-
absences).  When using a climate envelope model 
to forecast future climate change effects, the only 
evaluation data we have is for species occurrences we 
have already observed (those from the contemporary 
period), so we only evaluate performance based on 
the model’s ability to correctly distinguish occupied 
and unoccupied sites based on contemporary data.  
When it comes to forecasting future conditions, we 
really don’t know if a model is good or not, we just 
assume that if a model did a good job classifying 
contemporary occurrences, it will do a good job in the 
future.  

There are two basic types of errors to consider 
when evaluating model performance: omission and 
commission error (Figure 3).  Omission error occurs 
when a model fails to predict presence (or climate 
suitability) in an area where the species really does 
occur.  In other words, the model omits a known 
species presence.  Commission error happens when 
the model predicts presence/suitability in an area 
where the species is absent or occupancy is unknown.  
Commission error is usually interpreted as an 
overprediction, although that may not be entirely 

accurate because of the uncertain nature of absences 
(Lobo et al. 2010). 

In general, modelers distinguish between two 
different types of evaluation metrics: threshold-
dependent and threshold-independent metrics.  The 
outputs of a climate envelope model are generally 
interpreted as estimates of climate suitability or 
probabilities of species occurrence ranging from 
0—1.  Threshold-independent metrics evaluate 
model performance using only the probabilities 
resulting from the model.  In other words, threshold-
independent metrics evaluate model performance 
using the ‘raw’ probabilities of climate suitability for 
each grid cell in a prediction map: 0.01, 0.23, 0.79 
and so on, with higher numbers indicating greater 
suitability.  Threshold-dependent metrics require the 
user to convert raw probabilities into two categories 
by identifying a threshold above which probabilities 
are interpreted as representing areas of ‘suitable’ 
climate (and generally coded with a ‘1’), and below 
which probabilities are interpreted as representing 
‘unsuitable’ areas (generally coded with a ‘0’, Table 1). 
There is a well-developed literature on the selection 
of appropriate thresholds; the topic is a detailed one 
so we refer readers to Freeman & Moisen (2008) for 
a detailed discussion of threshold selection in species 
distribution models.     

There are many individual threshold-independent 
and threshold-dependent metrics available for model 

Probability
0.23 0.50 0.56 0.75

Threshold of 0.50 0 1 1 1
Threshold of 0.75 0 0 0 1

Table 1.  Examples of how different probabilities may be converted 
to a categorical (0/1) prediction differentiating suitable (coded as 1) 
and unsuitable (coded as 0) areas.  If the threshold is 0.50 and a cell 
probability is 0.23, that cell would be classified as ‘unsuitable’ and 
coded as a 0, whereas a cell with probability 0.56 would be classified as 
‘suitable’.  If the threshold is raised to 0.75, both cells would be classified 
as ‘unsuitable’.
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Figure 3.  Example prediction maps illustrating the concepts of omission and commission error. 
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evaluation; this too is a large area of research which 
we do not summarize here.  Fielding & Bell (1997) 
provide a widely-cited synopsis of model evaluation 
metrics.  Here we focus on three metrics that are 
widely used to evaluate model performance, but 
these are by no means the only metrics that one 
could use.  The first, and probably most widely-used 
performance metric, is the area under the receiver-
operator characteristic curve, usually abbreviated as 
AUC.  The AUC is a threshold-independent metric 
ranging from 0—1.  High values of AUC indicate the 
tendency for predicted suitability at points known to 
be occupied by a species (the presences used in model 
validation) to be greater than predicted suitability 
at sites not known to be occupied by the species 
(absences or pseudo-absences from the validation data 
partition; Figure 4).  In other words, a model will have 
a high AUC value if the predicted probabilities from 
the model at sites where the species is present (the 
presence data from the testing data subset) have, on 
average, higher values than sites where the species is 
‘absent’ in the test data set. 

The use of AUC has been criticized on numerous 
grounds (Lobo et al. 2007), the most problematic of 
which is the observation that ‘good’ AUC scores can 
be obtained simply by altering the geographic domain 
(a topic discussed later in the guidebook) for which 
models are created, making it easier for the model to 
more accurately differentiate presences and absences.  
Despite the criticisms, AUC remains in wide use for 
evaluating climate envelope models, at least in part 
because it is thought to be independent of prevalence 
(how rare or common a species is; Manel et al. 2001).  

Among threshold-dependent performance 
metrics, Cohen’s kappa (hereafter kappa) is arguably 
the most widely used.  Kappa, like AUC, ranges 
from 0—1, with greater values again indicating 
greater performance.  However, kappa measures the 

classification ability of the model (using the ‘test’ data 
partition for model evaluation), or whether or not 
presences occur in grid cells categorized as suitable 
and absences occur in cells categorized as unsuitable.  
The model classification is generally summarized 
in the form of a confusion matrix (Table 2), which 
succinctly enumerates the number of correctly and 
incorrectly classified presences and absences.  

A presence is considered correctly classified in the 
model if it occurs in a grid cell coded ‘1’, indicating 
that the cell’s predicted probability of climate 
suitability exceeds the threshold differentiating 
suitable and unsuitable areas.  Conversely, a presence 
is incorrectly classified if it occurs in a grid cell 
coded ‘0’, where the predicted suitability is below 
the threshold.  Because some occurrences may be 
correctly classified by chance alone, the formulation 
of kappa attempts to correct for chance classification 
(see Franklin 2009 for more discussion on the issue 
and the formula for kappa). Like AUC, high values 
of kappa indicate greater classification ability.  Unlike 
AUC, however, kappa is sensitive to the prevalence 
of species in a sample (e.g., the proportion of grid 
cells represented by species presences relative to the 
number of absences) and is not easily comparable 
among species that differ in prevalence. For that 
reason, there are not the same kinds of widely-
accepted guidelines for interpreting ‘good’ versus 
‘poor’ performance using kappa.  Note that because 
AUC and kappa are measuring different things 

Predicted
0 1

Observed
0 998 2
1 15 60

Table 2.  Confusion matrix summarizing correctly and incorrectly 
classified presences and absences. The boxes shaded in light grey are 
correctly classified, whereas the two dark grey boxes are incorrectly 
classified.
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Figure 4.  Example prediction maps illustrating the conditions that result in models with relatively high AUC scores (purple inset) and relatively low 
AUC scores (yellow inset). 
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about a model (AUC focuses on how well the model 
discriminates between occupied and unoccupied sites, 
where kappa focuses on classification ability), they 
are not always going to describe model performance 
similarly—it is not uncommon for models to have 
similar AUC scores, but very different kappa scores.  
Unfortunately there are no rules to resolve such 
apparent discrepancies, and users are encouraged 
to carefully consider what a model is being used 
for when interpreting evaluation metrics (e.g., will 
decision making require classifying suitable versus 
unsuitable areas—if so, kappa should probably take 
precedence over AUC in model evaluation), and ask 
for additional information when possible.      

  
It is worth noting that many researchers consider 

metrics of model performance derived from the 
confusion matrix to be the most meaningful, because 
they are direct measurements of omission and 
commission error.  From the confusion matrix, we 
may extract the percent of species presences that are 
correctly classified—these are ‘true positives’ and 
indicate the model’s sensitivity.  Because sensitivity 
measures the proportion of true presences that are 
correctly classified, it is directly related to omission 
error: (1-senstivity = omission rate).  In other words, 
models with high sensitivity have low ommission 
error.  We can also calculate the percent of absences 
that are correctly classified, the ‘true negatives’ that 
indicate model specificity.  Specificity is directly 
related to commission error:  (1-specificity = 
commission rate).  In other words, models with high 
specificity have low commission error.   In some cases, 
sensitivity and specificity are reported in their raw 
form as model diagnostics (Manel et al. 2001).  It 
is also worth noting that sensitivity and specificity 
(or their linear transformations) lie at the heart of 
the calculation of AUC, although AUC is calculated 
across all possible thresholds rather than any 
particular threshold (hence the reference to AUC as a 

threshold-independent metric).  See Franklin (2009) 
for more discussion on the issue. 

A final performance metric that is less widely 
reported in the literature, but one that the authors of 
this guidebook use frequently is the spatial (or map) 
correlation between prediction maps (Syphard & 
Franklin 2009).  Map correlation takes the suitability 
values from corresponding grid cells from two maps 
and calculates a correlation coefficient across all 
possible grid cells in two maps.  The resulting metric 
describes the spatial correspondence between two 
maps; whereas the other metrics discussed focus 
primarily on classification, map correlation focuses on 
the spatial prediction maps themselves.  The resulting 
correlation coefficient is interpreted just like Pearson’s 
r, with values from 0—1, with higher values indicating 
greater correspondence between grid cell values in the 
two maps.     

Suppose that two research groups are presenting 
results of their climate envelope models at a 
conference, or you are reading two papers by different 
authors.  One presents their model evaluation criteria, 
stating that they infer excellent model performance 
because they report an AUC of 0.967.  The other 
group had less apparent confidence in their model, 
because they report a kappa value of 0.742.  Does 
that mean that the second group had a ‘worse’ model 
than the first one?  Not at all—one is a threshold-
dependent metric and the other not, so they are 
measuring different things about the model.  It is 
entirely possible for two models to have similar AUC 
scores and very different kappas.  Because of this 
ambiguity, it may be worth asking the two researchers 
after their talk or contacting them directly to describe 
their models sensitivity and specificity, which can be 
interpreted directly in terms of what matters most in 
model evaluation: commission and omission error. 
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How are continuous probabilities 
converted to presence-absence?

Sometimes when considering predictions from 
climate envelope models, we are interested in thinking 
about predictions of occurrence or climate suitability 
on a continuous scale from 0 (absent or completely 
unsuitable) to 1 (present or completely suitable).  
Sometimes, though, we want to say something more 
general about occupancy or suitability and identify 
areas where the species is expected (i.e., considered 
likely) to occur and areas where it is not.  We want to 
draw a line in the sand and say ‘we think the species 
will be here but not there’.  This requires setting a 
threshold for the probability below which we will 
infer a species is likely to be absent, and above which 
we will infer presence.  But how do we define this 
threshold?  It would be very natural to say ‘if the 
probability of presence is greater than 50%, we’ll 
consider the species to be present, and if it’s below 
50%, we’ll consider it to be absent’.  However, it turns 
out that thresholds for determining presence and 
absence are highly associated with species prevalence 
(Manel et al. 2001).  Therefore, threshold measures 
should generally try to take prevalence into account.  
One detailed study (Freeman & Moisen 2008) 
compared several ways to determine thresholds in 
climate envelope models and found ideal thresholds 
take prevalence into account—so if a species has low 
prevalence, a lower threshold is used to distinguish 
suitable and unsuitable areas.  This topic is a complex 
one, and readers interested in the issue are referred to 
the papers by Freeman & Moisen (2008) and Manel 
et al. (2001).  The bottom line, however, is that using 
an arbitrary 50% threshold to differentiate suitable 
and unsuitable areas in a map is often not defensible 
in terms of ecological relevance.

What algorithms are used to model the 
species-climate relationship?

The choice of modeling algorithm is probably 
the single most important choice a user makes when 
creating a climate envelope model.  Several studies 
indicate that performance varies more as a function 
of the algorithm used to create a model than other 
components of the modeling process (e.g., the 
number of occurrence points, predictor variables, or 
climate dataset; Watling et al. 2012; Elith & Graham 
2009; Dormann et al. 2008; Elith et al. 2006).  That 
being said, studies do not always agree as to which 
algorithm is the best; regression trees, for example, 
have been implicated as both high-performing and 
low-performing across different studies (Elith & 
Graham 2009 ; Meynard & Quinn 2007).  Many 
authors have suggested that users create several 
models using different algorithms, and average the 
observations across those various models (Araújo & 
New 2007).  

It is beyond the scope of the current work to 
review all of the algorithms available for climate 
envelope modeling.  Rather than review all the 
algorithms available, we present data on model 
performance and spatial predictions for a subset of 
modeling algorithms that are widely used by many 
researchers for climate envelope modeling.  We 
focus on the implications of different algorithms for 
modeling rather than a detailed explanation of the 
theory underlying algorithms or the pros and cons of 
alternative algorithms.  

We compare performance of climate envelope 
models using three modeling algorithms: generalized 
linear models (GLM; McCullugh & Nelder 1989), 
maximum entropy models (Max; Phillips et al. 
2006; Phillips & Dudík 2006) and random forests 
(RF; Cutler et al. 2007).  All three of these methods 
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are widely used in climate envelope modeling, and 
we have used them for our work on threatened 
and endangered vertebrates in Florida.  Briefly, the 
GLM approach is essentially a logistic regression in 
which presence and (pseudo-) absence are modeled 
as a binomial response against climate predictors.  
The maximum entropy model uses knowledge of 
probability distributions of climate variables at sites 
known to be occupied by the species as well as a 
random sample of background climate conditions 
to estimate the probability distribution of species 
occurrence.  Random forests are a classification 
approach in which many random subsets of climate 
predictors are used to classify presence and (pseudo-) 
absence repeatedly in order to find values of climate 
predictors that best classify presence and absence.  

We describe performance using two of the 
model evaluation metrics described previously, AUC 
and Cohen’s kappa.  Although there were not huge 
differences in AUC among the three modeling 
algorithms (Table 3), differences become more 
pronounced using Cohen’s kappa, which describes 
a model’s ability to accurately classify presences and 
pseudo-absences.  On average, kappa was lowest for 
GLMs, intermediate for maximum entropy models, 
and highest using random forests.    

Suppose you hear about work from two research 
groups doing climate envelope modeling, but one 
uses generalized linear models, and the other group 
is using maximum entropy.  Both describe their 
model evaluation procedure and each independently 
concludes that, based on exceptionally high AUC 
scores (> 0.950 in both cases), they have high-
performing models.  Does that mean that prediction 
maps resulting from their work will be congruent?  
In other words, do two different models with ‘high’ 
performance result in prediction maps that look the 
same?  Not necessarily.  To illustrate the point, we 

include two prediction maps for one of the species 
the authors of this guidebook are working with, 
the Florida sand skink (Figure 5).  This endangered 
lizard is endemic to highly fragmented habitat 
patches distributed in a narrow band through central 
peninsular Florida.  Knowing what the geographic 
distribution of the Florida sand skink looks like, it is 
easy to see that the random forest model does a better 
job of delimiting a climate envelope for this species 
than the generalized linear model.  But imagine 
if the known distribution of a species were not as 
well-characterized?  Which map would we believe?  
Without additional information, we would not know 
which model was ‘right’, which is why we suggest that 
results of multiple models be used together to form 
more robust conclusions.  Remember that modeling 

AUC Kappa
GLM Max RF GLM Max RF

Common name
Mammals
Florida panther 0.981 0.995 0.990 0.262 0.668 0.890

Birds
Florida 
grasshopper 
sparrow

0.987 0.998 0.983 0.065 0.310 0.773

Florida scrub jay 0.998 0.990 0.999 0.718 0.526 0.902

Piping plover 0.865 0.927 0.989 0.168 0.378 0.836

Wood stork 0.910 0.947 0.980 0.422 0.507 0.863

Audubon’s 
crested caracara

0.957 0.993 0.999 0.114 0.712 0.897

Everglade snail 
kite

0.994 0.995 0.999 0.322 0.540 0.663

Whooping crane 0.918 0.986 0.989 0.102 0.351 0.673

Red-cockaded 
woodpecker

0.964 0.958 0.981 0.273 0.341 0.707

Reptiles and 
amphibians
American 
crocodile

0.931 0.942 0.979 0.078 0.126 0.522

Sand skink 0.998 0.996 0.997 0.234 0.111 0.734

Eastern indigo 
snake

0.979 0.996 0.999 0.354 0.552 0.895

Table 3.  Variation in model performance among three algorithms used 
for climate envelope modeling
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algorithms really matter and can sometimes make 
very different spatial predictions, even when 
everything else about the model is the same.

What are some of the assumptions 
underlying climate envelope modeling?

When considering what climate envelope models 
do and don’t do, it is worth keeping in mind some of 
the assumptions underlying the models (see Wiens 
et al. 2009 for a review).  One key assumption is 

Figure 5.  Prediction maps for the Florida sand skink illustrating different predictions resulting from the use of two different modeling algorithms.
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that of environmental equilibrium, or the idea that 
species occur throughout the range of suitable areas 
available to them.  By including species occurrences 
in models, we are assuming that those occurrences 
represent persistent populations with non-zero 
and non-negative growth rates.  A lot of work in 
ecology has investigated source-sink population 
dynamics, and it is widely appreciated that species 
can occur in low-quality ‘sink’ areas that would not, 
in and of themselves, support viable populations in 
the absence of dispersal from ‘source’ populations 
(Pulliam 1988). Incorporating sink populations, or 
observations of vagrant individuals passing through 
an area may result in overpredicting a species climate 
envelope by including areas not suitable for the 
long-term persistence of the species.  Conversely, 
species may be artificially absent from areas that are 
environmentally suitable.  Violation of the assumption 
that species occurrences represent the full breadth 
of environmental conditions suitable for the species 
can lead to models that under or over-represent the 
climate envelope of a species, resulting in models with 
high omission or commission errors, respectively.   

Another important assumption to bear in mind 
when using climate envelope models to project 
climate change effects on species distributions is that 
of niche conservatism.  By defining a species-climate 
relationship on the basis of contemporary climate and 
extrapolating that relationship into the future using 
projected climate data, we assume that a species will 
not evolve the ability to adapt to new climates.  Just 
as failing to consider species occurrences from areas of 
suitable climate conditions can result in models that 
underpredict the distribution of climate suitability, 
violation of the assumption of niche conservatism (no 
adaptation) can result in models that underpredict 
areas of future climate suitability.  There are many 
examples of species that show adaptations to local 
climate conditions (i.e., herbs, Souther & McGraw et 

al 2011,;trees, Vitasse et al. 2009; sea turtles, Weber 
et al. 2012), suggesting that many species have the 
potential for in situ adaptation in the face of climate 
change.  Climate envelope models will likely make 
poor predictions when modeling species that are 
capable of rapidly adapting to new climate conditions 
outside the range of conditions experienced elsewhere 
in their geographic range.
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not available for most species, so model developers 
rely on more-or-less haphazardly collected data 
consisting primarily of opportunistic species 
encounters.  We call these data ‘presence only’ because 
they do not include true survey-based absences.  

Some of the algorithms used to create climate 
envelope models are specifically designed for use 
with presence only data (‘presence only methods’) 
whereas other methods are designed for use with both 
presence and absence data.  There are also methods 
available for researchers who want to use presence-
absence methods even if they do not have access to 
true survey-based absence data.  Both of these topics 
are covered in more detail in other sections of the 
guidebook. 

Species Occurrences
What is the effect of erroneous 
occurrence data on models?

The georeferenced occurrences are the only 
species-specific data that are fed into a climate 
envelope model, so care should be taken to ensure 
that errors in the occurrence data are minimized.  
Published studies have investigated the effect 
of incorrect occurrence data by intentionally 
manipulating species occurrences to introduce error 
(Guisan et al. 2007).  Those results suggest that 
errors in the coordinate data can decrease model 
performance across a range of algorithms, although 
the observed decrease was not as substantial as may 
be expected (e.g., a decrease in AUC from about 

II. Selection of Input Data

Among the most obvious components of a climate 
envelope model are the inputs used to construct the 
model, namely the georeferenced species occurrences 
and the climate data.  Here we treat issues related 
to each of these modeling components separately, 
beginning with the species occurrence data, followed 
by the climate data layers.

The occurrence data used for climate envelope 
modeling can come from any number of sources, 
including field observations, radio tracking studies, 
or the primary literature.  Many occurrence data 
are compiled in online databases such as the 
Global Biodiversity Information Facility (www.
gbif.org) (information on additional online sources 
of occurrence data are included at the end of the 
guidebook).  Although online databases are a 
convenient source of occurrence data, one should 
be prepared to critique input data as part of the 
overall interpretation process.  In this section, we 
will introduce some critical considerations about 
data validity, format, and integrity.  Errors in 
georeferencing can occur, and sometimes different 
data types are mixed (such as inclusion of zoo or fossil 
records along with observations of ‘wild’ individuals). 
It can take much longer to prepare the species 
occurrence data for modeling (correcting locational 
errors when possible, removing duplicate observations, 
etc) than it takes to do the modeling itself.  

Although we do not go into detail here, a large 
literature deals with differentiating apparent absence 
(the non-detection of a species) from true absence (a 
species really does not occur in an area) in biodiversity 
surveys.  Unfortunately, systematic surveys are often 
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0.80 for the best-performing algorithms using 
unmanipulated data to about 0.75 for models in 
which error was artificially introduced).  It can be 
hard to know when an occurrence point is an error 
or not.  Some locational errors are obvious; the 
author’s of this guidebook have found that data 
obtained from online databases sometimes contain 
equivocal information, the most common of which is 
a latitude or longitude coordinate missing a negative 
sign (-) for values south of the equator or west of 
the prime meridian.  In many cases we have found 
sufficient supplementary information (e.g., a place 
name) accompanying the coordinate data so that 
it was possible to determine the nature of the error 
and correct it.  In other cases, we have found suspect 
outlying occurrences thousands of kilometers from 
the nearest georeferenced observation with no obvious 
explanation. Recall that one of the assumptions in 
climate envelope modeling is that each observation 
represents an area where environmental conditions 
(climate) are suitable for the maintenance of a viable 
population (e.g., one with a non-negative growth rate 
over time) of the target species.  If an observation is 
from an area where climate is not suitable for long-
term population persistence, it should probably be 
excluded from analysis.  This same criterion can be 
used to eliminate other types of occurrences that 
may not necessarily represent error per se.  For 
example, we have also observed that some occurrences 
compiled in online databases include zoo populations 
or fossil records. Since those observations obviously 
represent populations that are not at equilibrium with 
contemporary environmental conditions, they should 
also be excluded from analysis. Other sources of error 
in the species occurrence data may be more difficult 
to detect.  In our own work on vertebrate species in 
Florida, we elected to include most data unless there 
was a very obvious error in the identity of coordinates 
or observations were known to represent non-viable 
populations. 

What about the effects of small sample 
size?

Another issue of concern with the occurrence data 
is the number of observations.  As with the effects of 
erroneous location data, researchers have investigated 
the effect of sample size on model performance.  
Available data suggests that small sample sizes are 
not necessarily associated with decreased model 
performance, especially when sample size is greater 
than about 20—30 occupied grid cells (Guisan et al. 
2007).  In Table 4 we have added a column describing 
sample size of the species occurrence data for models 
included in the comparison of algorithms earlier in 
the guidebook.  We focus specifically on AUC and 
Cohen’s kappa for models using the random forest 
algorithm.  Inspection of the table indicates that 
performance is independent of sample size. 

Number of 
occurrence points

AUC Kappa

Common name
Mammals
Florida panther 86 0.990 0.890
Birds
Florida grasshopper 
sparrow

26 0.983 0.773

Florida scrub jay 194 0.999 0.902
Piping plover 782 0.989 0.836
Wood stork 1435 0.980 0.863
Audubon’s crested 
caracara

159 0.999 0.897

Everglade snail kite 101 0.999 0.663
Whooping crane 176 0.989 0.673
Red-cockaded 
woodpecker

515 0.981 0.707

Reptiles and 
amphibians
American crocodile 116 0.979 0.522
Sand skink 18 0.997 0.734
Eastern indigo snake 278 0.999 0.895

Table 4.  Model performance metrics and sample size for climate 
envelope models for threatened and endangered vertebrates in Florida 
using the random forest algorithm.
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absences can have a substantial influence on model 
performance and predictions.  This is because the 
selection of pseudo-absences defines the modeling 
domain, or the geographic area for which a model 
is being constructed.  It’s very easy to think about 
constructing a climate envelope model for a given 
area, probably politically defined (e.g., the continental 
USA, California, Spain) and moving forward from 
there.  The problem is that species, and the climate 
(and other) conditions that limit where species occur, 
do not necessarily coincide with political boundaries. 
A not unrelated issue has to do with potential biases 
in the species occurrence data themselves.  It is 
not uncommon, especially in more remote areas, 
that opportunistic species observations are made in 
relatively more accessible areas that may have different 
environmental conditions than the region as a whole 
(think about species observations concentrated along 
roads through a densely forested area, for example).  
It has been suggested that one way to deal with the 
fact that species presences themselves may be biased 
as well as reduce some of the arbitrariness of defining 
the modeling domain is to use what is called the 
target group approach (Phillips et al. 2009).  But 
before introducing the target group approach, let’s 
focus for a minute on the general problem: how does 
the selection of pseudo-absences influence model 
performance and predictions? 

Researchers have looked at the question of how 
the area from which pseudo-absences are drawn 
affects model outcomes by doing experiments where 
pseudo-absences are drawn from an increasing 
distance from where presences are concentrated 
(VanDerWal et al. 2009).  As the size of the pseudo-
absence ‘background’ increases, AUC tends to increase 
as well.  Simply put, it becomes easier and easier for 
a model to differentiate suitable and unsuitable areas 
when the background includes lots of unsuitable areas.  
This makes sense if you think about it at a really 

More important than sample size per se is the 
extent to which the full range of climate conditions 
experienced by a species is included in the occurrence 
datasets.  If no occurrence data are available for areas 
occupied by the species where climate differs from 
other occupied areas, the model will probably not 
identify those areas as suitable for the species.  Thus, 
we try to make sure that observations represent the 
full range of conditions experienced by the species, 
rather than ensuring representation of all possible 
species observations.  

Prior to analysis, duplicate occurrences within a 
grid cell are removed, so many individual occurrences 
ultimately are not included in analysis anyway. The 
bottom line is that many studies demonstrate that 
predictions from the best-performing algorithms 
are robust to small sample sizes (Wisz et al. 2008), 
so having few occurrence records should not be a 
deterrent to modeling as long as those occurrences 
represent the full range of climate conditions experienced 
by the species.    

How are pseudo-absence data 
obtained?

Because we often lack true survey-based absence 
data when constructing climate envelope models, 
it is common to use randomly-selected ‘pseudo-
absences’ (Chefaoui & Lobo 2008) along with 
known species presences.  Pseudo-absences are really 
a random sample of ‘background’ environmental 
conditions, rather than a description of conditions 
at places where a species is actually known to be 
absent.  There are different ways to select pseudo-
absences, but in general a random sample of points 
(often between 1,000-10,000) is selected from the 
study area, and climate data are extracted for this 
random sample. Although it seems like a relatively 
straightforward issue, the selection of pseudo-
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selected (Figure 6).  This approach reduces some of 
the arbitrariness of defining the model domain, but 
does not rely on a potentially small number of target 
group occurrences for modeling.

Climate Data
In addition to the georeferenced species 

observations, the other primary data input in climate 
envelope models are the climate data themselves.  
Climate data are generally used in the form of raster 
grids.  These grids are used to sample climate from 
grid cells occupied by a species, and are also used to 
describe climate in areas to which the model will be 
extrapolated.  Here we focus almost exclusively on the 
contemporary climate data used for model calibration 
rather than the many issues associated with describing 
future climate.   

Which climate data should be used for 
models? 

The selection of a climate data set for modeling 
of the contemporary species-climate relationship 
should be made in light of many considerations: the 
spatial domain of the study, grid cell size, availability 
of relevant data layers, etc.  For example, several 
high-resolution climate datasets exist for some or 
all of the United States, but these datasets are not 
relevant for modeling species that occur outside of 
the United States.  Similarly, some datasets may 
have global extent, but only for a limited number of 
climate variables (e.g., monthly mean temperature 
and monthly precipitation, but not minimum or 
maximum temperature). Grid cell size also matters: 
when modeling a range-restricted species, the entire 
geographic range may conceivably fall within a 
single grid cell measuring 1/6 of a decimal degree in 
each direction.  Thus you may have sufficient species 

large scale: it’s easy to differentiate the climate in say, 
northern California, from the climate in the rest of 
the continental USA.  But it’s probably a lot harder 
to differentiate the climate in northern California 
from the climate in the rest of the Pacific Northwest.  
The result is that model performance statistics like 
AUC get larger as the background area gets bigger 
(at some point, the background can get too big and 
performance starts to decrease again).  So a researcher 
can more or less guarantee a high AUC by varying the 
model domain appropriately. Hence the need to come 
up with a non-arbitrary way to define model domain.

The target group approach has been recommended 
as one way to reduce some of the arbitrariness in 
defining model domain, while also dealing with 
another problem: that of bias in the presence data 
themselves.  The idea is that if presences are taken 
from a restricted portion of the environment (e.g., 
roads) that differs systematically from areas without 
roads (and hence no species observations), you may 
violate one of the assumptions of the models, namely 
that presences are obtained from all suitable areas 
where the species occurs.  Phillips et al. (2009) suggest 
that the best way to fight bias is with bias: rather than 
using pseudo-absences from random points, take 
observations of ecologically similar species sampled 
using similar methods (therefore incorporating the 
same sample selection bias as in the presence data), 
and use those observations (where similar species 
are known to occur, but the study species has not 
been recorded) as the pseudo-absences in the focal 
species model.  Although Phillips et al. (2009) 
suggest using the individual observations of closely 
related species as the pseudo-absences for the species 
being modeled, the authors of this guidebook have 
used a modification of the target group approach.  
Under their approach, a polygon is drawn around 
the observations of target group species to define an 
area from which pseudo-absence data are randomly 
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Figure 6.  Illustration of the authors’ modification of the target group approach (Phillips et al. 2009).
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Although we do not go into detail on the many 
alternative general circulation models (GCMs) used 
to forecast climate change effects, note that these 
and other issues such as the considerations involving 
the selection of emissions scenarios and the use 
of downscaled data have been addressed in other 
documents (e.g., Glick et al. 2011).   

Which individual variables should be 
used for modeling?

There are two broad types of temperature and 
precipitation data that can be used for climate 
envelope modeling: data can be expressed as monthly 
variables (e.g., January mean temperature, July 
precipitation) or as bioclimate variables (Nix 1986) 
that largely describe seasonal trends and climate 
extremes (the full list of bioclimate variables is 
available in Appendix I).  Because detailed species-
specific data are not incorporated into climate 
envelope models, variable selection is the only way 
to ‘tailor’ models to species ecology.  Many authors 
have advised careful attention to variable selection so 
as to include variables that have direct and proximal 
effects on species ecology (Austin 2002, 2007).  That 
is, variables should have a known direct influence or 

observations (say 100+) for modeling, but if those 
occurrences fall within a single grid cell, you have a 
sample size of one.  In that case, it may be necessary 
to use a higher-resolution climate dataset so that 
more occurrences can be effectively incorporated into 
models.  

There are many sources of data describing 
contemporary climate that can be used as inputs 
to climate envelope models.  Although we cannot 
mention all possible data sources here, we mention 
some of the most widely-used and freely-available 
climate datasets.  The PRISM dataset includes climate 
normals (long-term averages) for the 1971—2000 
and 1981—2010 periods for the contiguous United 
States at a resolution of 30 arc-seconds (1/120th 
of a decimal degree).  In addition, monthly climate 
data are available for the period 1895—present.  The 
monthly data are available at a resolution of 2.5 
arc-minutes (1/24th of a decimal degree).  Data 
from the Lawrence Livermore National Laboratory 
(LLNL) are available as climate normals for the years 
1950—1999 at a 1/8 degree spatial resolution for the 
contiguous United States.  Summary information on 
these and other sources of spatially-explicit climate 
maps are included in Table 5.   

Dataset Website Domain Variables Time period 
covered Resolution

WorldClim http://www.worldclim.org Global
Min T, Max T, Mean 

T, Precipitation, 
Bioclim

1950—2000 30 arc-seconds – 
10 arc-minutes

Climate 
Research 

Unit
http://www.cru.uea.ac.uk Global

Mean T, Diurnal T 
range, Precipitation, 

Ground-frost 
frequency,

1961—1990 10 arc-minutes

PRISM http://www.prism.oregonstate.edu 48 conterminous 
United States

Min T, Max T, Mean 
T, Precipitation, 

Average dewpoint
1896—2011 2.5 arc-minutes

LLNL http://gdo-dcp.ucllnl.org 48 conterminous 
United States

Precipitation (mm/
day), T mean 1950—1999 2 degrees

NCEP http://dss.ucar.edu/datasets/
ds093.2 Global Min T, Max T, Mean 

T, Precipitation, others 1979—2011 30 arc-minutes—
2.5 degrees

Table 5.  Summary information for several contemporary climate datasets useful for climate envelope modeling.

http://gdo-dcp.ucllnl.org/
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that collinearity can affect predictions from climate 
envelope models, and researchers often recommended 
that highly intercorrelated variables be removed 
from analysis (Dormann et al. 2008).  There are no 
hard-and-fast rules for determining what constitutes 
intercorrelated versus uncorrelated variables, and this 
decision is usually made operationally by individual 
researchers. It’s also worth mentioning that in many 
cases, there is no mention of data collinearity when 
discussing models.  As a general rule, though, model 
results are probably going to be more interpretable if 
they use fewer, relatively uncorrelated variables; in that 
case it should be more straightforward to interpret 
shifts in climate suitability unambiguously in terms of 
the climate predictors.  

be considered likely to have a direct physiological 
influence on the species of interest (direct) and be 
the most causal variables describing a physiological 
response (proximal).  For example, temperature is 
generally a more proximal variable than elevation, 
because species do not respond to elevation directly, 
but more likely respond to temperature (which of 
course varies as a function of elevation).  For a species 
distributed in relatively warm areas, winter minimum 
temperature is probably among the most direct 
variables to include in a model, because there is a clear 
association between the variable (winter temperature) 
and species physiology (warm-climate species are 
generally freeze intolerant). The feeling is that in 
the absence of judicious variable selection, model 
predictions will be arbitrary rather than reflective of 
‘true’ responses of species to changing climate.  

Because the authors of this guidebook were 
unaware of studies comparing models constructed 
from monthly climate variables to those constructed 
from bioclimate variables, they conducted such an 
investigation with some of the species from their 
work on threatened and endangered vertebrates in 
Florida (Watling et al. 2012). They found that model 
performance (using AUC and kappa) was similar, 
and spatial correlations very high for models using 
bioclimate and monthly variables with the random 
forest algorithm (Table 6, Figure 7; models using 
GLMs generally had lower performance and less 
correlated spatial predictions than random forest 
models). 

An issue worth considering when selecting 
predictor variables for use in climate envelope 
models is data collinearity.  Collinearity refers to a 
situation in which multiple predictor variables are 
highly correlated with one another, undermining the 
ability to determine which predictor is truly driving a 
response, and to what degree.  It has been suggested 

Species Spatial correlation

Mammals

Florida panther 0.867

Birds

Florida grasshopper sparrow 0.946

Florida scrub jay 0.968

Piping plover 0.903

Wood stork 0.882

Audubon’s crested caracara 0.953

Everglade snail kite 0.932

Whooping crane 0.912

Red-cockaded woodpecker 0.960

Amphibians and Reptiles

American crocodile 0.671

Sand skink 0.921

Eastern indigo snake 0.970

Average ± 1 SD 0.907 ± 0.081 

Table 6.  Spatial correlations between prediction maps from models 
created using bioclimate or monthly climate variables.  The overall high 
correlations indicate that prediction maps were similar regardless of the 
identity of variables used.
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Figure 7.  Example prediction maps showing similarities in predictions from climate envelope models constructed from bioclimate and 
monthly climate variables.
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(Table 7).  At smaller spatial scales, patterns of 
collinearity may depart from global averages.  In 
general, one may expect to see greater collinearity 
among variables at smaller spatial scales, although 
there may be considerable spatial variation in the 
extent to which this is true.  For example, in areas of 
rapid elevation change or varied topography, climate 
may covary much less strongly than in relatively flat 
areas.

Although it is increasingly common to see the 
issue of data collinearity dealt with explicitly when 
presenting results from climate envelope models, 
some researchers still present results where variable 

The extent to which climate variables co-vary 
depends on both variable identity and spatial scale.  
The guidebook authors compared global data on 
monthly temperature and precipitation and found that 
temperature variables tend to show greater collinearity 
than precipitation variables (Table 7).  In fact, only 
two monthly temperature variables are relatively 
uncorrelated at the global scale: January and July.  
Temperature during other months of the year tend 
to be highly correlated (r > 0.85) with either January 
or July temperature.  Precipitation variables tend to 
be less intercorrelated at a global scale.  Relatively 
independent (r < 0.85) precipitation variables include 
January, April, May, June, September and October 

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 1 0.997 0.979 0.933 0.852 0.696 0.585 0.690 0.847 0.945 0.987 0.998
Feb 0.997 1 0.990 0.953 0.879 0.731 0.625 0.725 0.872 0.960 0.991 0.997
Mar 0.979 0.990 1 0.984 0.930 0.804 0.708 0.795 0.919 0.982 0.990 0.982
Apr 0.933 0.953 0.984 1 0.978 0.887 0.806 0.874 0.961 0.987 0.966 0.941
May 0.852 0.879 0.930 0.978 1 0.961 0.901 0.943 0.980 0.960 0.907 0.865
Jun 0.696 0.731 0.804 0.887 0.961 1 0.982 0.987 0.955 0.871 0.777 0.715
Jul 0.585 0.625 0.708 0.806 0.901 0.982 1 0.987 0.916 0.798 0.683 0.610

Aug 0.690 0.725 0.795 0.874 0.943 0.987 0.987 1 0.963 0.874 0.777 0.712
Sep 0.847 0.872 0.919 0.961 0.980 0.955 0.916 0.963 1 0.969 0.908 0.863
Oct 0.945 0.960 0.982 0.987 0.960 0.871 0.798 0.874 0.969 1 0.980 0.955
Nov 0.987 0.991 0.990 0.966 0.907 0.777 0.683 0.777 0.908 0.980 1 0.993
Dec 0.998 0.997 0.982 0.941 0.865 0.715 0.610 0.712 0.863 0.955 0.993 1

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Jan 1 0.981 0.926 0.729 0.440 0.163 0.035 0.028 0.218 0.543 0.805 0.956
Feb 0.981 1 0.960 0.777 0.477 0.185 0.048 0.038 0.224 0.532 0.774 0.922
Mar 0.926 0.960 1 0.887 0.599 0.282 0.129 0.119 0.315 0.604 0.798 0.888
Apr 0.729 0.777 0.887 1 0.844 0.535 0.351 0.338 0.516 0.720 0.775 0.736
May 0.440 0.477 0.599 0.844 1 0.846 0.657 0.641 0.743 0.752 0.604 0.474
Jun 0.163 0.185 0.282 0.535 0.846 1 0.911 0.875 0.847 0.634 0.360 0.205
Jul 0.035 0.048 0.129 0.351 0.657 0.911 1 0.96 0.839 0.522 0.222 0.077

Aug 0.028 0.038 0.119 0.338 0.641 0.875 0.960 1 0.897 0.574 0.248 0.082
Sep 0.218 0.224 0.315 0.516 0.743 0.847 0.839 0.897 1 0.818 0.498 0.301
Oct 0.543 0.532 0.604 0.720 0.752 0.634 0.522 0.574 0.818 1 0.851 0.654
Nov 0.805 0.774 0.798 0.775 0.604 0.360 0.222 0.248 0.498 0.851 1 0.911
Dec 0.956 0.922 0.888 0.736 0.474 0.205 0.077 0.082 0.301 0.654 0.911 1

Table 7.  Correlation coefficients between pairwise combinations of monthly mean temperature (top) and precipitation (bottom) in the WorldClim 
global climate dataset based on records from approximately 1950—2000.
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explanatory power and relatively low covariance with 
other variables) and constructed separate models for 
the same group of 12 threatened and endangered 
vertebrate species in Florida.  We looked at model 
performance using AUC and kappa, and used map 
correlation to describe similarities between the two 
maps for each species.  Although we found evidence 
that model performance varied among algorithms 
(which is not a surprise given that many studies 
have shown that algorithm selection is the primary 
determinant of model performance), there were no 
significant differences in AUC or kappa between 
models created with CRU or WorldClim data.  
Average spatial correlations between prediction maps 
made with CRU or WorldClim data ranged from 
0.817—0.886 depending on the algorithm used.  
By way of comparison, recall that we found higher 
spatial correlations, and more consistent predictions 
(e.g., there was a lower standard deviation) when 
comparing bioclimate versus monthly variables.  To 
put these numbers in context, we also looked at spatial 
correlations between projections of future climate 
using three different GCMs.  The average spatial 
correlations among GCMs ranged from 0.763—
0.819), only a bit lower than average correlations 
between contemporary climate datasets.  So while 
differences between the contemporary climate data 
incorporated into models does not have as strong 
an effect, on average, as the selection of modeling 
algorithm, it can introduce variation in spatial 
predictions made from models.  Different researchers 
use lots of different sources of contemporary climate 
data for climate envelope modeling (Table 5 is just 
a summary of a few datasets, and is far from an 
exhaustive list), and rarely describe how different 
their results are when using inputs from different 
datasets.   If you are seeing unexplained discrepancies 
between maps that are otherwise similar (i.e., made 
for the same species in the same area using the same 
modeling algorithm), it is worth keeping in mind that 

collinearity is an issue.  If you suspect that models 
you are hearing or reading about include highly 
intercorrelated variables, it is worth asking whether 
the authors tested for collinearity—if not, treat the 
results with extra caution.  Including highly correlated 
variables in an analysis does not necessarily always 
change the model outcomes in a major way, but it can 
influence spatial predictions from climate envelope 
models. 

How does the climate dataset input 
influence model outputs?

Although this issue has received surprisingly little 
attention in the vast literature on species distribution 
modeling, there is evidence that alternative climate 
data inputs can under some circumstances affect 
the spatial predictions of climate envelope models 
(Parra & Monahan 2008).  Authors of this guidebook 
have investigated differences in performance and 
spatial predictions between climate envelope models 
constructed with data from two global climate 
datasets, WorldClim (Hijmans et al. 2005) and the 
Climate Research Unit (CRU; New et al. 2002); 
summary data on both datasets are included in Table 
5.  Both datasets are widely-used for a variety of 
climate change applications, and represent average 
climate conditions (temperature and precipitation) 
for the terrestrial portion of the globe from the mid 
to late twentieth century.  Both datasets were created 
by spatially interpolating data derived from long-term 
records from a global network of weather stations, 
although the identity and number of stations, the 
elevation model used as a covariate to climate, and 
the spatial interpolation technique used to create the 
climate surface varied between datasets (Hijmans et 
al. 2005).  We extracted the same subset of monthly 
temperature and precipitation variables from each 
dataset (the identity of variables differed for each 
species and represented combinations with high 
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some differences between prediction maps may be 
expected just because of the different data sets used 
to create the models—ask the researchers to describe 
their input climate data to determine whether this can 
explain differences in model predictions. 

 
Considering the effects of climate dataset in 

the context of results presented at a climate change 
conference or in two different journal articles, bear in 
mind that the algorithm used for modeling is most 
likely to be the biggest source of variation when 
comparing results.  Comparing results generated 
using different algorithms can be like comparing 
apples and oranges.  Results obtained using different 
climate datasets are probably more comparable, on 
average, than results using different algorithms, but 
when confronted with differing model predictions, it 
is worth noting that some results could be a function 
of differences in how climate is described in two 
different datasets. 

For more information:

Hijmans R. S., S. E. Cameron, J. L. Parra, P. G. Jones 
& A. Jarvis.  2005.  Very high resolution 	climate 
surfaces for global land areas.  International 
Journal of Climatology 25:1965—1978.

New M., D. Lister, M. Hulme & I. Makin.  2002.  A 
high-resolution data set of surface climate 	
over global land areas.  Climate Research 21: 
1—25. 

Phillips S. J., M. Dudík, J. Elith, C. M. Graham, 
A. Lehmann, J. Leathwick & S. Ferrier.  2009.  
Sample selection bias and presence-only 
distribution models: implications for background 
and pseudo-absence data.  Ecological Applications 
19:181—197. 
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climate change effects, the implications for model 
predictions may be problematic.

There are several ways to deal with limiting the 
areas in which models make their predictions.  The 
Maxent software for maximum entropy modeling 
uses a procedure called ‘clamping’ to constrain 
model predictions to areas with climate (or other 
environmental conditions) within the range of values 
observed in the training data.  More generally, an 
approach called MESS (Multivariate Environmental 
Similarity Surface) modeling can be used to 
investigate the appearance of novel climates in 
projection maps (Elith et al. 2010).  It is definitely a 
good idea to take a conservative approach when doing 
climate envelope modeling, and restrict the area of 
model extrapolation to places where conditions are 
within the range of the calibration data.   

What are ‘no-analog’ conditions?

When talking about climate change issues, it is 
not uncommon to hear people talking about ‘no-
analog’ conditions/climate/communities.  The idea 
is conceptually related to the idea presented in the 
past section about extrapolating models into areas 
with conditions outside the boundaries for which 
the models were trained.  As climate changes in 
a given location, new conditions may arise in that 
place that are different from what they are now, or 
were in the recent past (Figure 8).  So an area that 
has long been characterized by two months of sub-
freezing temperatures in the winter, for example, 
may be expected to only receive one or two hard 
freezes per year in the future.  Thus, future conditions 

III. Interpreting model outputs

To what extent can model results be 
extrapolated to other contexts?

There has been a lot of discussion about the 
abilities and limits of model extrapolation in the 
context of describing climate change effects on 
species.  The essence of the issue is that the models 
tend to make erratic or erroneous estimates when 
extrapolating outside the data limits on which they 
were trained.  For example, if a model included 
January temperature as a variable, and presence/
absence points included in the model had January 
temperatures ranging from -9.9—17.4 °C, the model 
could reasonably be expected to make predictions 
for sites with January temperature in that interval.  
Estimates of climate suitability may start to break 
down, though, when dealing with sites where January 
temperature is projected to reach temperatures greater 
than 17.4 °C because the model was not trained with 
these conditions, and thus it does not know how to 
classify sites with such extreme conditions.  

It is easy to see this issue at play when using 
climate envelope models for climate change work, but 
the same thing can happen when using models with 
data from the same time period, but different areas 
spatially (for example, this may happen when using 
models to understand the potential distribution of 
invasive species).  We may train a model in the native 
range of a species, say South America, and then use 
it to predict climate suitability for the species in the 
southern USA.  It’s easy to imagine that extrapolating 
the model trained in one area could result in ‘new’ 
values of climate data in the area for which you are 
making a map.  As was the case when considering 
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Figure 8.  Map illustrating the concept of no-analog climates.
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are expected to be different from contemporary 
conditions such that no contemporary analog (or 
comparison) to the expected future condition exists.  
People talk about no-analog conditions at different 
scales, from regional to global.  It may be possible, 
for example, that future climate conditions expected 
in one place may actually match climate at some 
other place today.   If those two locations are on 
opposite sides of the Earth, however, people may 
still use the term ‘no-analog’ to refer to the future 
condition, because the matching climate condition is 
geographically very distant.  

Among the implications of a no-analog future is 
that we can’t expect natural systems in the future to 
look the way they do now, and they may not occur in 
the places they occur now.  Because of this managing 
natural resources for future conditions may be quite 
a bit different than the management occurring today.  
In the context of climate envelope modeling, models 
may not perform particularly well when extrapolating 
into no-analog conditions, so users (and those of us 
interpreting results from climate envelope models) 
should remember to treat estimates in areas of no-
analog climate with extra caution.   

For more information:

Elith J., M. Kearney & S. Phillips.  2010.  The art of 
modeling range-shifting species.  Methods in 
Ecology and Evolution 1:330—342.

Williams J.W. & S. T. Jackson.  2007.  Novel climates, 
no-analog communities and ecological surprises.  
Frontiers in Ecology and Environment 5:475—
482.
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Appendix I

Bioclimate variables
Annual Mean Temperature
Mean Diurnal Range (Mean of monthly (max temp - min temp)) 

Isothermality (annual mean temperature / mean diurnal range * 100)
Temperature Seasonality (variation across 12 months)
Max Temperature of Warmest Month
Min Temperature of Coldest Month
Temperature Annual Range (Max temperature of warmest month – min temperature of coldest month)
Mean Temperature of Wettest Quarter
Mean Temperature of Driest Quarter
Mean Temperature of Warmest Quarter
Mean Temperature of Coldest Quarter
Annual Precipitation
Precipitation of Wettest Month
Precipitation of Driest Month
Precipitation Seasonality (variation across 12 months) 

Precipitation of Wettest Quarter
Precipitation of Driest Quarter
Precipitation of Warmest Quarter
Precipitation of Coldest Quarter

Appendix 1. List of 19 standard bioclimate variables.
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incorrectly classified presences and absences which 
corrects for chance classifications.  Cohen’s kappa 
ranges from 0—1, with higher values indicating 
greater classification ability.

Collinearity: Intercorrelation between predictor 
variables in climate envelope models.  Researchers 
often use a subset of relatively uncorrelated predictors, 
because high collinearity can alter predictions in 
climate envelope models.

Commission error: A classification error in which 
presence is falsely predicted.  In a climate envelope 
model, commission error happens when a model 
predicts climate suitability for a species in an area 
where the species is not known to occur. The opposite 
of omission error.    

Confusion matrix: A table in which the number 
of objects predicted to occur in a given number 
of categories is tallied with the number of objects 
actually occurring in the same categories.  In a climate 
envelope model, a confusion matrix summarizes 
the number of species observations predicted and 
observed to occur in areas where climate is suitable or 
not.  

Cross-validation: An approach to model evaluation 
often used when an independent dataset is 
not available to check the accuracy of a model.  
Alternative cross-validation approaches involve 
partitioning a large dataset into ‘training’ and ‘testing’ 
subsets.  A model is created with the training data, 
and the ability of that model to classify the test data 
is evaluated using a cross-validation technique such 
k-fold partitioning or data subsetting. 

Glossary

Algorithm: the mathematical function used to 
describe a species-climate relationship.  Common 
algorithms in climate envelope modeling include 
generalized linear models, maximum entropy, and 
random forests.

AUC (Area under the Curve): The area under the 
receiver-operator characteristic curve is a threshold-
independent metric of model performance.  High 
values of AUC (closer to 1) indicate models that more 
accurately discriminate climate conditions at presence 
and absence sites. 

Calibration: The process of fitting a species-climate 
relationship, usually based on contemporary climate 
data.  Once a model is calibrated, its performance is 
evaluated and it can be extrapolated to new areas or 
time frames.  

Clamping: A process in maximum entropy modeling 
wherein extrapolation of a model can be restricted to 
areas where climate conditions match those found 
in the calibration data set.  Clamping ensures that 
models cannot be used to describe conditions outside 
the range for which they were calibrated (and for 
which predictions may be invalid).  

Climate envelope model: A mathematical function 
describing climate suitability for a species based on a 
correlation between occurrence and climate. Climate 
envelope models are often extrapolated to describe 
future climate change effects on species.  Climate 
envelope models are a subset of more general species 
distribution models.   

Cohen’s kappa (kappa): A threshold-dependent 
model evaluation metric that measures correctly and 
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No-analog future: This phrase is used to describe 
the idea that climate change is likely to result in 
conditions in some places that are unlike those seen in 
that area in the past or present.  Thus, there may be no 
present-day analog for expected future conditions that 
can be used to understand climate change responses. 

Omission error: A classification error in which 
absence is falsely predicted.  In a climate envelope 
model, omission error happens when a model fails 
to predict climate suitability for a species in an area 
where the species is known to occur. The opposite of 
commission error.    

Overprediction:  The tendency of a climate envelope 
model to predict climate suitability in areas where a 
species is not known to occur.  Some overprediction 
is often inevitable, because species do not occur 
everywhere that climate is suitable.  However, 
too much overprediction indicates a model is not 
effectively discriminating between suitable and 
unsuitable areas. 

Prediction:  An extrapolation of a climate envelope 
model into the near future for which validation data 
are likely to be available.  Whereas a projection refers 
to an extrapolation that cannot be reasonably verified 
in a relatively short time frame, a prediction is an 
extrapolation that can be verified in the near future.  

Projection:  An extrapolation of a climate envelope 
model into a future time for which validation data 
are unavailable.  Whereas a prediction refers to 
an extrapolation that can be reasonably verified 
in a relatively short time frame, a projection is an 
extrapolation that cannot be verified in the near 
future.  

Pseudo-absences:  Georeferenced point data used in 
many climate envelope modeling algorithms.  Because 

Extrapolation: Application of a model outside 
the spatial or temporal boundaries within which 
it was created.  Climate envelope models are often 
extrapolated to make projections about future climate 
change effects on species.    

Generalized linear models: A widely-used algorithm 
for climate envelope modeling that builds from a 
linear regression framework to model variation in a 
dependent variable as a function of an independent 
predictor variable. 

Map correlation: A metric of correspondence 
between prediction maps, in which each grid cell in 
a map is correlated with the corresponding grid cell 
in another map.  Map correlation varies from 0—1, 
with higher values indicating greater correspondence 
between prediction maps. 

Maximum entropy (Maxent): An algorithm for 
climate envelope modeling that calculates the 
probability of occurrence of a species as a function of 
environmental (climate) conditions where the species 
occurs relative to background conditions in the area of 
interest.  

Multivariate Environmental Similarity Surface 
(MESS): An approach to identifying areas where 
climate conditions occur outside the boundaries of 
those for which a model was calibrated.  Extrapolating 
results from climate envelope models in such areas 
is not recommended, and MESS provides a way to 
identify those areas that should be excluded when 
extrapolating models to project climate change effects 
on species.  

Niche conservatism: A key assumption of climate 
envelope modeling that assumes species cannot adapt 
to new climate conditions different from those where 
it already occurs.  
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unsuitable. Cohen’s kappa, sensitivity and specificity 
are all examples of threshold-dependent metrics.  The 
raw data for calculating threshold-dependent metrics 
are often summarized in a confusion matrix.   

Threshold-independent metrics:  Approaches to 
model evaluation that do not require the user to 
define a threshold at which climate is categorized 
as suitable or unsuitable. The AUC is an example of 
threshold-independent metric.

Testing: In a cross-validation procedure, testing is 
done to evaluate a model created from the training 
dataset.  Often, 25% of species occurrences (presences 
and absences) are used for model testing.

Training: In a cross-validation procedure, the 
training data are used to create a model, which is 
then evaluated using test data.  Often, 75% of species 
occurrences (presences and absences) are used for 
model training.

true biological absence is usually difficult to verify, 
researchers use ‘pseudo-absences’ where the presence 
of a species is unknown, along with the presence data 
where a species is known to occur.  

Random forests:  A modeling algorithm in which 
random subsets of selected climate predictors are used 
to classify presence and (pseudo-) absence over and 
over again in order to find values of climate predictors 
that best classify species occurrence. 

Sensitivity:  A model’s ability to correctly classify 
species presences.  In a model with high sensitivity, 
presences occur in grid cells where climate is 
categorized as suitable for a species. 

Source-sink population dynamics: The idea 
that species may occur in areas (sinks) where the 
environment is unsuitable for long-term persistence 
because of subsidization from source populations. 
Species characterized by strong source-sink 
population dynamics violate a key assumption of 
climate envelope modeling, namely that species occur 
in areas suitable for long-term population persistence.   
  
Species distribution model: A mathematical function 
describing environmental suitability for a species 
based on a correlation between occurrence and 
environmental conditions.  Climate envelope models 
are a subset of more general species distribution 
models.   

Specificity:  A model’s ability to correctly classify 
species absences.  In a model with high specificity, 
absences occur in grid cells where climate is 
categorized as unsuitable for a species.   

Threshold-dependent metrics: Approaches to model 
evaluation that require the user to define a threshold 
at which climate is categorized as suitable or 
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Helpful Resources

http://www.worldclim.org/: Climate data online

http://www.prism.oregonstate.edu/: Climate data online

http://www.climatewizard.org/: Climate data online

http://www.ncdc.noaa.gov/oa/climate/normals/usnormals.html: Climate data online

http://www.ipcc.ch/: Intergovernmental Panel on Climate Change (IPCC) homepage

http://www.gbif.org/: Species occurrence database

http://zipcodezoo.com/: Species occurrence database

http://www.ornisnet.org/: Bird occurrence database

http://manisnet.org/: Mammal occurrence database

http://www.herpnet.org/: Amphibian and reptile occurrence database

https://www.pwrc.usgs.gov/BBS/: Breeding Bird Survey data

http://www.diva-gis.org/: Free GIS software

http://data.prbo.org/apps/bssc/: Climate change vulnerability for California birds

http://www.habitat.noaa.gov/pdf/scanning_the_conservation_horizon.pdf:  Guide to climate change 
vulnerability assessment, including models and modeling
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