Final Report for Technical Assistance for an Ecological Evaluation of the Southwest Florida Feasibility Study

STRESSOR RESPONSE MODEL FOR THE SPOTTED SEATROUT, Cynoscion Nebulosus

By Frank J. Mazzotti, Leonard G. Pearlstine, Tomma Barnes, Stephen A. Bortone, Kevin Chartier, Alicia M. Weinstein, and Donald DeAngelis

Joint Ecosystem Modeling Laboratory
Technical Report Series
FINAL REPORT for Technical Assistance for an Ecological Evaluation of the Southwest Florida Feasibility Study

STRESSOR RESPONSE MODELS FOR THE SPOTTED SEATROUT, Cynoscion Nebulosus

Prepared By:
Frank J. Mazzotti¹, Leonard G. Pearlstine¹, Tomma Barnes², Stephen A. Bortone³, Kevin Chartier¹, Alicia M. Weinstein¹, and Donald DeAngelis⁴

¹University of Florida
Ft. Lauderdale Research and Education Center
3205 College Ave
Davie, FL 33314
(954) 577-6304

²South Florida Water Management District
Fort Myers Service Center
2301 McGregor Blvd.
Fort Myers, FL 33901

³Sanibel-Captiva Conservation Foundation, Marine Laboratory
900A Tarpon Bay Road
Sanibel, FL 33957

⁴United States Geological Survey
University of Miami, Dept. of Biology
1301 Memorial Dr. RM 215
Coral Gables, FL 33146

Prepared For:
South Florida Water Management District
Fort Myers Service Center
2301 McGregor Blvd.
Fort Myers, FL 33901

United States Geological Survey
1301 Memorial Dr. RM 215
Coral Gables, FL 33146
(305) 284-3974

MAY 2006
This report should be cited as:

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the University of Florida.

Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report.
Contents

Introduction .. 1
Southwest Florida Feasibility Study ... 1
C43 West Reservoir .. 1
Forecasting Models .. 1
 Habitat Suitability Indices .. 2
Ecology of the Spotted seatrout .. 2
HSI for the Spotted seatrout .. 3
 HSI Formula .. 6
 HSI Graphs ... 7
References Cited .. 10

Figures

Figure 1. Index value for spotted seatrout forage response to temperature .. 7
Figure 2. Index value for spotted seatrout adult response to salinity ... 7
Figure 3. Index value for spotted seatrout forage response to % cover of seagrass 8
Figure 4a. Spotted seatrout spawning requirement depth ... 9
Figure 4b. Index value for spotted seatrout spawning response to depth .. 9

Tables

Table 1. Habitat requirements for the Spotted seatrout .. 4
STRESSOR RESPONSE MODEL FOR THE SPOTTED SEATROUT

By Frank J. Mazzotti, Leonard G. Pearlstine, Tomma Barnes, Stephen A. Bortone, Kevin Chartier, Alicia M. Weinstein, and Donald DeAngelis

Introduction

A key component in adaptive management of Comprehensive Everglades Restoration Plan (CERP) projects is evaluating alternative management plans. Regional hydrological and ecological models will be applied to evaluate restoration alternatives and the results will be applied to modify management actions.

Objective

The purpose of this habitat suitability model for the C-43 West Basin Reservoir and Southwest Florida Feasibility Study projects is to portray species responses to changes in environmental variables resulting from restoration activities spatially and temporally to facilitate policy decisions. The intention of the habitat suitability model is not to simulate the life-cycles of the species. Rather, the intent is to estimate numbers of habitat units to serve as a relative basis for comparing management alternatives.

Southwest Florida Feasibility Study

The Southwest Florida Feasibility Study (SWFFS) is a component of the Comprehensive Everglades Restoration Plan (CERP). The SWFFS is an independent but integrated implementation plan for CERP projects and was initiated in recognition that there were additional water resource issues (needs, problems, and opportunities) within Southwest Florida that was not being addressed directly by CERP. The SWFFS identifies, evaluates, and compares alternatives that address those additional water resource issues in Southwest Florida. An adaptive assessment strategy is being developed that will create a system-wide monitoring program to measure and interpret ecosystem responses. The SWFFS provides an essential framework to address the health and sustainability of aquatic systems. This includes a focus on water quantity and quality, flood protection, and ecological integrity.

C43 West Reservoir

The purpose of the C43 Basin Storage Reservoir project is to improve the timing, quantity, and quality of freshwater flows to the Caloosahatchee River estuary. The project includes an above ground reservoir with a total storage capacity of approximately 197 million cubic meters (160,000...
acre-feet) and will be located in the C-43 Basin in Hendry, Glades, or Lee Counties. The initial design of the reservoir assumed 8094 hectares (20,000 acres) with water levels fluctuating up to 2.4 meters (8 feet) above grade. The final size, depth and configuration of this facility will be determined through more detailed planning and design.

Forecasting Models

Forecasting models bring together research and monitoring to ecosystems of Southwest Florida and place them into an adaptive management framework for the evaluation of alternative plans. There are two principle ways to structure adaptive management: (1) passive by which policy decisions are made based on a forecasting model and the model is revised as monitoring data become available, and (2) active by which management activities are implemented through statistically valid experimental design to better understand how and why natural systems respond to management (Wilhere 2002).

In an integrated approach that includes both passive and active-adaptive management, a forecasting model simulates system response and is validated by monitoring programs to measure actual system response. Monitoring can then provide information for passive-adaptive management for recalibration of the forecasting model. Directed research, driven by model uncertainties, is an active-adaptive management strategy for learning and the reduction of uncertainties in the model.

The forecasting models for the C-43 West Reservoir Project and the Southwest Florida Feasibility Study consist of a set of stressor response (habitat suitability) models for individual species. These stressor response models have been developed principally with literature, expert knowledge, and currently available field data.

Habitat Suitability Indices

Habitat Suitability Indices (HSI) models were developed with each stressor variable portrayed spatially and temporally across systems of the study area at scales appropriate to the organism or community being portrayed. The HSI models have been incorporated into a GIS to portray responses spatially and temporally to facilitate policy decisions. That is, the model describes a response surface of habitat suitability values that vary spatially according to stressor levels throughout the estuary and temporally according to temporal patterns in stressor variables. Much of the temporal variation is a result of temporal cycling of important stressor inputs, such as water temperature and salinity. Temporal change for other important variables may not be cyclical, such as rising sea level and increasing land use and fresh water demands in the region. Areas predicted to be suitable and those predicted to be less suitable or disturbed should be targeted for additional sampling as part of the model validation and adaptive management process.

Species selected for modeling (focal species) are ecologically, recreationally or economically important and have a well established linkage to stressors of management interest. They may also make good focal species because they engage the public in caring about the outcome of restoration projects. The habitat suitability models (HSI) were developed by choosing specific life stages of each species with the most limited, restricted, or tightest range of suitable conditions, to capture the highest sensitivities of the organisms to the environmental changes associated with the planned restoration activities. Values used in the models are listed in Table 1.

The models calculate habitat suitability monthly as the weighted geometric mean of the environmental variables identified as important for each model. Because the geometric mean is
derived from the product of the variables rather than the sum (as in the arithmetic mean) and has the appropriate property that if any of the individual variables are unsuitable for species success (i.e., the value of the variable is zero) then the entire index goes to zero.

Ecology of the Spotted Seatrout

The spotted seatrout, *Cynoscion nebulosus*, is a member of the Sciaenidae family of croakers and drums. It is an important estuarine species as it can serve as a long-term indicator of estuarine conditions because it is one of the few estuarine species that spends its entire life within the confines of a single estuarine system. The species occurs in all estuaries from North Carolina to Mexico along the Atlantic and Gulf of Mexico coasts. An added feature of this species is that it is highly prized by both commercial and recreational fishers, thus, it commands attention among the general public. These features of its basic biology and position with the public make it an ideal species as an indicator of estuarine conditions.

Seatrout are non-migratory fish (Tabb 1966) that are found in shallow bays, estuaries, bayous, canals, and along Gulf Coast beaches. Spotted seatrout usually live between seven and ten years, completing their entire life cycle in these inshore waters while utilizing different estuarine zones and habitats during different life stages (Helser et al. 1993). Adults can tolerate a wide range of salinities and temperatures (Tabb 1958, Simmons 1957, Vetter 1982, Killam et al. 1992) and in South Florida are not commonly exposed to extremes that may be lethal (e.g. temperature <4°C (Tabb 1958)). Spawning is thought to occur throughout the summer (Brown-Peterson 2003, Brown-Peterson et al. 2001, McMichaels and Peters 1989) in South Florida estuaries in meso and polyhaline portions of the estuary and near passes (5 -30 ppt) but not in oligohaline areas (<5 ppt) (Holt and Holt 2003, Lassuy 1983). A depth requirement for spawning has been suggested as less than 5 m (Brown-Peterson 2003), in areas next to steep drop offs, near seagrass beds (Bortone pers. com). Eggs hatch in more saline marine to estuarine environments (25-40 ppt) which enables eggs to stay buoyant (Holt and Holt 2003, Alshith and Gilmore, 1994).

Juveniles and adult spotted seatrout are frequently associated with seagrass beds, a critical habitat for the species (Chester and Thayer 1990, Tolan et al. 1997, Rooker et al. 1998, Thayer et al. 1999, Baltz et al. 2003,). In colder months, they may move into deeper holes within the estuary (Tabb 1958).

Spotted seatrout have permanently recorded growth features; growth rings or annuli on its otolith or ear stone. These rings reflect the growth conditions to which the fish had been subjected (Bedee et al. 2003). Therefore, the growth rate of each fish is essentially a permanent historical record that reflects the environmental conditions of a specific estuary.
HSI for the Spotted Seatrout

Environmental parameters used to determine habitat suitability of the adult spotted seatrout forage include salinity, temperature, and seagrass cover. Salinity, and proximity to seagrasses (SAV) and drop offs are used for the adult spawning habitat suitability component. SAV coverage is output from annual suitability models for seagrasses. Specific requirements that have been pulled from scientific literature are listed, along with their source, in Table 1 below.

A user interface for running coastal southwestern Florida HSI models is documented in Mazzotti et al. (2006).
Table 1. Habitat Requirements for the Spotted Seatrout

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drop-offs</td>
<td>Essential</td>
<td>Lowe-Barbieri (FWRI, personal communication)</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>---</td>
</tr>
</tbody>
</table>

HSI for the Spotted Seatrout

HSI Formula

Forage Component Index = (Habitat^{W_{\text{Seagrass}}\%\text{Cover}} \times \text{Salinity}^{W} \times \text{Temperature}^{W})

Spawn Component Index = (Habitat^{W_{\text{Dropoff} \& \text{SeagrassProximity}}} \times \text{Salinity}^{W})

Spawning is May - October

HSI = \text{MAX}(\text{ForageComponent}, \text{SpawnComponent})

The HSI for any particular grid-cell is selected as the maximum of the forage component or the spawning component. The component values are not multiplied together because they occupied different places in the landscape.

Temperature values used in model are average monthly water temperatures and do not change with hydrologic alternatives.
HSI Graphs

Figure 1. Index value for spotted seatrout forage response to temperature

Figure 2. Index value for spotted seatrout adult response to salinity
Figure 3. Relationship between the suitability index and % cover of seagrass for spotted seatrout foraging.
Figure 4a. Spotted seatrout spawning requirement for depth. Spawning is within a 100 m proximity to steep drop-offs and a 400 m proximity to seagrass beds.

Figure 4b. Index value for spotted seatrout spawning response to depth. The suitability value of the spawning habitat component decreases linearly as distance increases from a seagrass bed. The habitat suitability is illustrated here as a red gradient with values from 0.0 (white) to 1.0 (darkest red).
References Cited

